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Abstract. The Bidirectional Texture Function (BTF) is the recent most
advanced representation of visual properties of surface materials. It spec-
ifies their appearance due to varying spatial, illumination, and view-
ing conditions. Corresponding enormous BTF measurements require a
mathematical representation allowing extreme compression but simulta-
neously preserving its high visual fidelity. We present a novel BTF model
based on a set of underlying mono-spectral two-dimensional (2D) moving
average factors. A mono-spectral moving average model assumes that a
stochastic mono-spectral texture is produced by convolving an uncorre-
lated 2D random field with a 2D filter which completely characterizes the
texture. The BTF model combines several multi-spectral band limited
spatial factors, subsequently factorized into a set of mono-spectral mov-
ing average representations, and range map to produce the required BTF
texture space. This enables very high BTF space compression ratio, un-
limited texture enlargement, and reconstruction of missing unmeasured
parts of the BTF space.

Keywords: BTF, texture analysis, texture synthesis, data compression,
virtual reality, moving average random field.

1 Introduction

Realistic virtual reality scenes require objects covered with synthetic textures vi-
sually as close as possible to the corresponding real surface materials appearance
they emulate under any required viewing conditions. Such textures have to model
real non-Lambertian rugged surfaces whose reflectance is illumination and view
angle dependent. Recent most advanced visual representation of such surfaces is
the Bidirectional Texture Function (BTF) [1, 2] which is a 7-dimensional func-
tion describing surface appearance variations due to varying spatial position and
illumination and viewing angles. Such a function is typically measured by thou-
sands of images per material sample, each taken for a specific combination of the
illumination and viewing condition. Visual textures can be either represented by
digitized measured textures or textures synthesized from an appropriate math-
ematical model. Using digitized textures directly suffers among others with ex-
treme memory requirements for storage of a large number of digitized cross
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sectioned slices through different material samples of the measured BTF space
[2]. Moreover this solution become even unmanageable for physically correctly
modeled scenes with BTF surfaces representation because even a simple scene
with only several materials requires to store tera bytes of textural data which is
still far out of limits for any current and near-future hardware. Several so called
intelligent sampling methods (for example [4–6] and some others) were proposed
to reduce these extreme memory requirements. All these methods are based on
some sort of original small texture sampling and the best of them produce very
realistic synthetic textures. However, they still require to store thousands images
for every combination of viewing and illumination angle of the original target
texture sample and additionally they often produce images with undesirable vi-
sual artifacts like visible seams (except for the method presented in [7]). Some
of them are very computationally demanding and none of them is able to gener-
ate previously unseen textures (i.e., BTF space reconstruction). Contrary to the
sampling approaches, the synthetic textures generated from mathematical mod-
els are more flexible and extremely compressed, because only tens of parameters
have to be stored only instead of the original visual measurements. They may be
evaluated directly in a procedural form and can be used to fill virtually infinite
texture space without visible discontinuities. On the other hand, mathematical
models can only approximate real measurements, which might result in visual
quality compromise. A BTF texture representation requires seven dimensional
mathematical models, but it is possible to approximate this general BTF model
with a set of much simpler three or two dimensional factorial models. Such a
compromise obviously leads to some information loss.

The proposed underlaying moving average model suffers from inability to
represent low frequencies present in natural textures. But this problem can be
negotiated by utilizing a multiple resolution decomposition such as the Gaus-
sian Laplacian pyramid. The hierarchy of different resolutions of an input image
provides a transition between pixel level features and region or global features
and hence such a representation simplify modelling a large variety of possible
textures. Each band limited component is modeled independently. BTF moving
average model represents a novel method for efficient rough texture modelling
which combines an estimated range map with synthetic smooth multi-spectral
texture generated by the set of multiscale mono-spectral moving average mod-
els. The texture visual appearance during changes of viewing and illumination
conditions are simulated using either the bump mapping [8] or displacement
mapping [9] technique. The obvious advantage of this solution is the possibility
to exploit direct support for both bump and displacement mapping techniques
in the contemporary graphics hardware.

2 Moving Average BTF Model

The BTF model combines an estimated enlarged material range map (section
2.1) with synthetic multiscale multi-spectral smooth texture (sections 2.2-2.6).
We seek a trade-off between an extreme compression ratio and the visual qual-
ity by using several probabilistic BTF subspace dedicated models. The intrinsic
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BTF space dimensionality is estimated using the eigenanalysis approach and
the segmentation is done using the K-means clustering in the perceptually uni-
form CIE Lab color-space (see details in [2, 10]). Each modeled BTF subspace
is further spectrally decorrelated (section 2.2) and decomposed into several spa-
tial factors (section 2.3). The mono-spectral band limited parts of single BTF
subspaces are modeled using the 2D moving average models (section 2.4). Fi-
nally, the overall BTF texture visual appearance during changes of viewing and
illumination conditions is simulated using either the bump [8] or displacement
mapping [9] techniques.

2.1 Range Map Modelling

The overall roughness of a textured surface significantly influences the BTF tex-
ture appearance. Such a surface can be specified using its range map, which can
be either measured or estimated by several existing approaches such as the shape
from shading [11], shape from texture [12] or photometric stereo [13]. The photo-
metric stereo enables to acquire the normal and albedo fields from at least three
intensity images obtained for different illuminations but fixed camera position
while a Lambertian opaque surface is assumed. The BTF model range map es-
timate can benefits from tens of ideally mutually registered BTF measurements
(e.g., 81 for a fixed view of the University of Bonn data [3]) and uses the over-
determined photometric stereo from mutually aligned BTF images. However, the
photometric stereo method is not well suited for surfaces with highly specular
reflectance, highly subsurface scattering or strong occlusion, since it breaks the
Lambertain reflectance assumption. Estimated range map is enlarged into any
required size using the roller method [7].

2.2 Spectral Decorrelation

Measured visual surface data can be spectrally decorrelated only approximately,
therefore this step leads to certain loss of information. Spectral factorization is
performed by the Karhunen-Loeve transformation (K-L). The original data space
Ỹ is transformed into new one with coordinate axes Ȳ . New basis consists of
the eigenvectors of the second-order statistical moments matrix V = E{ỸrỸ

T
r }

where r denotes a multiindex r = (r1, r2), r ∈ I, with the row and column
indices, • all possible values of the corresponding index, and I is a finite discrete
2-dimensional rectangular M × N index lattice. The projection of a random
vector Ỹr onto the K-L coordinate system uses transformation matrix which
consists of eigenvectors of V . The total number of those eigenvectors depends on
the number of spectral bands in the original data. If we assume that components
of the transformed data Ȳr,• = T Ỹr,• are Gaussian then they are independent
and thus each mono-spectral factor can be modeled independently.

2.3 Spatial Factorization

The spatial factorisation is technique that enables separate modelling of indi-
vidual band limited frequency components of input image data and thus to use
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random field models with small compact contextual support. Each grid resolu-
tion represents a single spatial frequency band of the texture which corresponds
to one layer of Gaussian-Laplacian pyramid (G-L) [2]. The input data are de-
composed into a multi-resolution grid and all resolution data factors represents
the Gaussian pyramid of level k which is a sequence of k images in which each
one is a low-pass down-sampled version of its predecessor. An analysed data are
decomposed into multiple resolutions factors using the Laplacian pyramid and
the intermediary Gaussian pyramid. Each level of Laplacian pyramid generates
a single spatial frequency band of the data. Laplacian pyramid contains band-
pass components and provides a good approximation to the Laplacian of the
Gaussian kernel. It can be computed by differencing single Gaussian pyramid
layers.

2.4 2D Moving Average Texture Model

Single mono-spectral smooth texture factors are modelled using the moving av-
erage model [14] (MA2D). A stochastic mono-spectral texture can be considered
to be a sample from 2D random field defined on an infinite 2D lattice. Let us
denote I a finite discrete 2-dimensional rectangular index lattice for some input
factor Y represented by the MA2D random field model, Yr is the intensity
value of a mono-spectral pixel r ∈ I in the image space. The model assumes
that each factor is the output of an underlying system which completely char-
acterizes it in response to a 2D uncorrelated random input. This system can be
represented by the impulse response of a linear 2D filter. The intensity values of
the most significant pixels together with their neighbours are collected and aver-
aged, and the resultant 2D kernel is used as an estimate of the impulse response
of the underlying system. A synthetic mono-spectral factor can be generated
by convolving an uncorrelated 2D random field with this estimate. Suppose a
stochastic mono-spectral texture denoted by Y is the response of an underlying
linear system which completely characterizes the texture in response to a 2D un-
correlated random input er, then Yr is determined by the following difference
equation:

Yr =
∑

s∈Ir

bser−s (1)

where bs are constant coefficients and Ir ⊂ I. Hence Yr can be represented
Yr = h(r) ∗ er where the convolution filter h(r) contains all parameters bs. In
this equation, the underlying system behaves as a 2D filter, where we restrict the
system impulse response to have significant values only within a finite region.
The geometry of Ir determines the causality or non-causality of the model. The
selection of an appropriate model support region is important to obtain good
results: small ones cannot capture all details of the texture and contrariwise,
inclusion of the unnecessary neighbours adds to the computational burden and
can potentially degrade the performance of the model as an additional source of
noise.
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Fig. 1. Original colorful texture and it synthesis using CAR2D, GMRF 2D, and MA2D

models (from left to right)

2.5 Parameter Estimation

To fit the model given in equation (1) to a given image Y , the parameters of h(r)
have to be estimated. This may be performed by using a method [14] similar to
the one-dimensional Random Decrement Technique [15]. The procedure begins
by arbitrarily selecting a threshold, γ usually chosen as some percentage of the
standard deviation (σ) of the intensities of the input. All results in the paper
use γ = 0.5σ. The analysis starts from the top left corner of Y and proceeds
to the bottom right corner identifying the pixels at which the intensity crosses
the threshold. When a threshold crossing occurs at location r, the intensity
values of the support region defined by Ir around the crossing point are saved
in memory (index set Γ ), if among the four adjacent pixels to r, at least one in
the same row and one in the same column are less than the threshold. The same
procedure is followed at the next threshold crossing point and these intensity
values are added to the previously saved. The summed up segments are divided
by the total number of segments for the corresponding parameter estimates, i.e.,

b̂s =
1

cardinality{Γ}
∑

∀r∈Γ

Yr+s ∀s ∈ Ir . (2)

Additional details can be found in [14].

2.6 Model Synthesis

The underlyingMA2D model is able to generate synthetic images from the model
parameters. Synthetic mono-spectral factor can be generated by convolving an
uncorrelated 2D random field with the estimate of ĥ(r) according (1). It has
been proved [16] that the synthesized image closely approximates the first and sec-
ond order statistics of the original one when er is the white noise. The synthetic
band limited multi-spectral factors are created by the inverse K-L transformation
Ỹr,• = T−1Ȳr,• from the corresponding monospectral factors. Fine-resolution
synthetic multi-spectral smooth texture is then obtain by the G-L pyramid col-
lapse which is inverse procedure to that described in section 2.3.
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Fig. 2. Two BTF wood synthetic materials mapped on the 3D shell model under two
different illumination angles

3 Results

We have tested the model on BTF colour textures from the University of Bonn
BTF measurements [3] consist of several materials such as wood (Fig.2) or
leather. Each BTF material sample comprised in the University of Bonn database
is measured in 81 illumination and 81 viewing angles and has resolution 800×800
pixels. The resulting texture quality is approaching existing alternative BTF
models based on 2D random fields: Causal Auto-Regressive model (CAR2D)
[17] and Gaussian Markov random field model (GMRF 2D) [18].

Table 1. Processing time for single models

model analysis synthesis
[s] [s]

GMRF 2D 5.63 21.68
CAR2D 8.49 3.62
MA2D 2.32 3.66
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BTF moving average model represents a simple alternative to these BTF models.
Multi-spectral (both BTF or non-BTF) models based on spectral factorization
(2D random field models) have problems to correctly represent spectrum of mot-
ley textures (Fig. 1-left). The MA2D models spectrally outperforms (Fig. 1)
both these alternative models due to its weak spatial correlations. The main
advantage of the moving average model is its stability, which is a problem which
has to be occasionally treated for CAR type models. The GMRF models require
approximate parameters estimation and demanding texture synthesis. Another
advantage of the model is its numerical efficiency, Tab.1 compares analysis and
synthesis times for a 128 × 128 texture with 4 pyramid levels on the 2GHz
Pentium 4 processor.

4 Conclusion

The presented BTF moving average model offers the possibility to describe and
enlarge BTF textures and represents the simple alternative to existing 2D BTF
models. The preliminary test results of the model on available BTF data are
promising although they are only approximation of the original measurements.
Even not so successful results can be used for the preattentive BTF textures
applications. The presented BTF moving average model enables fast seamless
enlargement of BTF texture to arbitrary size and very high BTF texture com-
pression ratio which cannot be achieved by any alternative sampling based BTF
texture enlargement method. This is advantageous for transmission, storing or
modelling visual surface texture data. Model has low computation complexity,
does not need any time consuming numerical optimisation like the usually em-
ployed Markov chain Monte Carlo method or some of their deterministic approx-
imation, or Fourier transformation. On the other hand, the necessary spectral
and spatial factorizations increase overall time and computing demands. This
model may be also used to reconstruct BTF space (i.e., missing parts of the
BTF measurement space) or even non existing (i.e., previously not measured)
BTF textures. Due to its simplicity, the model is also potentially capable of di-
rect implementation inside the graphical card processing unit or a multithreaded
implementation.
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